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Metal ions and oxygen radical reactions in human inflammatory
joint disease

By B. HarrLiweLrr!, J. M. C. GuTTERIDGE? AND D. BLAKE?

! Department of Biochemistry, King’s College London, Strand, London WC2R 2LS, U .K.
2 National Institute for Biological Standards and Control, Holly Hill, Hampstead,
London NW3 6RB, U .K.

3 Rheumatology Research Wing, University Medical School, Birmingham B15 2TJ, U.K.

Activated phagocytic cells produce superoxide (O3) and hydrogen peroxide (H,0,);
their production is important in bacterial killing by neutrophils and has been
implicated in tissue damage by activated phagocytes. H,0O, and O; are poorly
reactive in aqueous solution and their damaging actions may be related to formation
of more reactive species from them. One such species is hydroxyl radical (OH"), formed
from H,O, in the presence of iron- or copper-ion catalysts. A major determinant of
the cytotoxicity of O; and H,0, is thus the availability and location of metal-ion
catalysts of OH" formation. Hydroxyl radical is an initiator of lipid peroxidation. Iron
promoters of OH" production present in vivo include ferritin, and loosely bound iron
complexes detectable by the ‘bleomycin assay’. The chelating agent Desferal
(desferrioxamine B methanesulphonate) prevents iron-dependent formation of OH*
and protects against phagocyte-dependent tissue injury in several animal models of
human disease. The use of Desferal for human treatment should be approached with
caution, because preliminary results upon human rheumatoid patients have revealed
side effects. It is proposed that OH" radical is a major damaging agent in the inflamed
rheumatoid joint and that its formation is facilitated by the release of iron from
transferrin, which can be achieved at the low pH present in the micro-environment
created by adherent activated phagocytic cells. It is further proposed that one function
of lactoferrin is to protect against iron-dependent radical reactions rather than to act
as a catalyst of OH" production.

INTRODUCTION

There has been considerable interest in the role of oxygen-derived species such as superoxide
(O3) and hydrogen peroxide (H,0O,) as agents of tissue damage by activated phagocytic cells
in a number of disorders, including the adult respiratory distress syndrome, autoimmune
disease, chronic joint inflammation, reperfusion injury after ischaemic cardiac damage, and
cancer. In this paper recent developments of our knowledge of the role of oxygen-derived species
in human rheumatoid arthritis will be discussed.

PRODUCTION OF OXYGEN-DERIVED SPECIES BY PHAGOCYTIC CELLS

Reviewing the massive literature on the production of oxygen-derived species by phagocytes
is not a task that can be attempted here, but the authors believe that the present state of the
subject can be summarized as follows.

(i) Itis well established that neutrophils, monocytes, macrophages and eosinophils produce
superoxide radical (O3) and hydrogen peroxide (H,O,) upon activation of the respiratory

burst.
52-2

[ 209 ]

[Z8 (€
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to |[& )z

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. STOR M
www.jstor.org


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

660 B. HALLIWELL, J. M. C GUTTERIDGE AND D. BLAKE

(i) The products of the respiratory burst play a key role in bacterial killing by neutrophils,
as shown by the greatly impaired killing seen in patients suffering from chronic granulomatous
disease.

(iii) The myeloperoxidase system in neutrophils plays a lesser role in killing because inborn
defects in myeloperoxidase activity rarely produce clinically observable defects in bacterial
killing (see, for example, Nauseef e al. 1983).

(iv) There is no clear evidence that activated phagocytes produce singlet oxygen (see, for
example, Kanofsky et al. 1984). Indeed, hypochlorous acid (HOCI) itself, and the products of
its reaction with various amines, are toxic (Albrich et al. 1981) ; there is no need to invoke singlet
O, to explain the toxicity of the myeloperoxidase -H,O,~ halide system. HOCI and its reaction
products may mediate some of the damage done by activated phagocytic cells to their
environment (Test et al. 1984).

Studies of the chemistry of oxygen-derived products (for reviews see, for example, Halliwell
& Gutteridge 1984, 1985 ; di Guiseppi & Fridovich 1984) also lead to the following conclusions.
Pure O; and pure H,O, are poorly reactive in aqueous solution, yet biological or chemical
O;-generating systems can damage many biomolecules. This damage is often prevented or
decreased by addition of superoxide dismutase (SOD), or catalase, or both, to the reaction
mixtures. Superoxide and H,O, themselves do not peroxidize membrane lipids or degrade
DNA. In addition, H,O, can cross cell membranes whereas Oy cannot unless there is a specific
channel for it (for example, the ‘anion channel’ in the erythrocyte membrane).

It therefore follows that the damage done by activated neutrophils that has been attributed
to oxygen radicals, such as hyaluronic acid degradation (Greenwald & Moy 1980) or DNA
fragmentation (Weitberg et al. 1983; Phillips et al. 1984), is unlikely to be a result of direct
reactions of O; or H,0, themselves. A suggestion that O3 contributes to formation of a
‘chemotactic factor’ that attracts more neutrophils into a site of inflammation, has recently
been challenged. Indeed, although copper-zinc superoxide dismutase has an anti-inflammatory
effect, there is increasing doubt about whether this is entirely because of removal of O3 radical
(Baret et al. 1984).

Perhaps, then, the damage done is due to some ‘reactive factor’ that Oy and H,O, produce.
Suggestions have included the following.

(i) Singlet oxygen. There is no clear evidence for the production of this by phagocytic cells.

(ii) HO; radical. The protonated form of O; is a more powerful oxidizing agent than is Oy
itself and reacts with unsaturated fatty acids. Formation of HO; is favoured at low pH values
(its pK, is ca. 4.8) but the pH beneath adherent activated macrophages has been reported to
be 5 or less (Etherington e al. 1981) and so it may be biologically relevant.

(iii) Hydroxyl radical. Hydroxyl radical, OH", is produced when water is exposed to
high-energy ionizing radiation, and so its properties have been well documented by radiation
chemists. Hydroxyl radical is highly reactive, and any produced iz vivo will react at or close
to its site of formation. The nature of the direct damage done by OH" in vivo would therefore
depend on what its site of formation was; so production of OH" close to DNA could lead to
strand breakage (Mello Filho & Meneghini 1984), whereas production close to an enzyme
molecule that is present in excess in the cell, such as lactate dehydrogenase, might have no
biological consequences. It should also be remembered that reaction of OH" with a biomolecule
will produce another radical, usually of lower reactivity (because of the extremely high
reactivity of OH"). Such less-reactive radicals can cause their own problems, because they can
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diffuse away from their site of formation and attack specific biomolecules. For example, uric
acid reacts with OH" radical; it protects lactate dehydrogenase against inactivation by OH"
but accelerates inactivation of alcohol dehydrogenase (Kittridge & Willson 1984). The urate-
derived radicals are less reactive overall, so more of them survive to reach the sensitive sites
on alcohol dehydrogenase that they can react with. Perhaps the best example of the importance
of secondary radicals is the ability of OH" to initiate lipid peroxidation by hydrogen-atom
abstraction, with subsequent formation of peroxy radicals (for reviews see, for example,
Halliwell & Gutteridge 1984, 1985).

Hydroxyl radical is produced when H,O, comes into contact with iron ions. ‘Free’ iron ions
cannot exist iz vivo, but complexes of iron salts with phosphate esters (such as ATP and GTP),
organic acids (such as citrate and lactate) and DNA are all effective in decomposing H,O,
(Floyd 1981, 1983; Flitter et al. 1983). Copper ions also promote the decomposition of H,O,
to OH" (Samuni et al. 1981; Rowley & Halliwell 1983). The DNA damage done by H,0O, to
human fibroblasts and mouse cells in culture can be minimized by metal chelating agents (Mello
Filho & Meneghini 1984), suggesting that the H,O, crosses the plasma membrane and
combines with metal ions (probably iron) bound at or close to DNA.

Hence a major determinant of the actual toxicity of Oy and H,O, to cells is the availability
and location of metal-ion catalysts of OH" radical formation. If| for example, iron salts are bound
to DNA or membrane lipids, introduction of H,0O, and Oj can fragment the DNA and
peroxidize the membrane lipids. The site of attack of the OH" radicals will be determined by
the site of the bound metal ion; such ‘site-specific’ damage is rarely prevented by ‘scavengers’
of OH" (Czapski 1984) and the nature of the damage will probably not even resemble that
done by OH" radical generated in free solution and attacking the target randomly (Gutteridge
& Halliwell 1982; Samuni et al. 1981; Gutteridge 1984 4a; Czapski 1984). The postulated
‘crypto-OH" radical’ may represent formation and localized reactivity of ‘real’ OH" radical
(Youngman 1984; Moorhouse ¢t al. 1985). For example, exposure of proteoglycan or mucus
preparations to metal-dependent systems that generate OH' seems to produce specific patterns
of fragmentation rather than just random attack (Creeth et al. 1983 ; Cross et al. 1984), perhaps
because the metal catalysts bind readily to specific sites.

There is much debate about the role played by the OH'" radical in initiating lipid peroxidation
in systems containing iron salts (Aust & Svingen 1982). It is known that OH" radicals, such
as those produced radiolytically, can initiate peroxidation by abstracting hydrogen atoms, yet
laboratory experiments in which peroxidation of liposomes or microsomal fractions is ‘initiated’
by iron-salt—ascorbate mixtures or NADPH-iron-salt-ADP mixtures often show little inhibition
of peroxidation on addition of OH" radical scavengers, even though formation of OH" radicals
can be demonstrated in the reaction mixtures (Aust & Svingen 1982 ; Gutteridge 198445). There

have been suggestions that perferryl, ferryl or Fe!l-Fe!ll

-0, complexes are the true initiators
of peroxidation. This may be correct, but other possibilities exist. Those OH" radicals important
in initiation are formed by metal ions attached to the membranes; such site-specific production
of OH" could not be prevented by scavengers in bulk solution (Czapski 1984). Alternatively,
once the. peroxidation process has begun, initiation is continued by the alkoxy and peroxy
radicals formed upon iron-dependent decomposition of lipid peroxides; OH" radicals are
not necessary under these conditions. Most lipid systems contain some pre-formed lipid
hydroperoxide (Gutteridge 19845, ¢), and it is merely necessary to fragment these peroxides to

continue the chain reaction.
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CHELATING AGENTS AND OXIDATIVE TISSUE DAMAGE

If OH' radicals are formed by low molecular mass metal complexes in free solution and then
have to diffuse a short distance to attack a target, protection by added OH" scavengers should
be seen and has been reported in several in vivo systems (see, for example, Cohen 1978; Fox
1984). On the other hand, site-specific OH" radical formation is much more difficult to
protect against in this way (Czapski 1984; Moorhouse ef al. 1985). Protection here can be
achieved by (i) superoxide dismutase and H,O,-removing enzymes, to stop O, and H,0O, ever
reaching the bound metal complexes, and (ii) chelating agents that pull the metals away from
sensitive sites and render them inactive. Complexes of iron salts with diethylenetriaminepenta-
acetic acid and bathophenanthroline show diminished reactivity in OH" production (Halliwell
19784, b), but the chelating agent most effective in preventing iron-dependent OH" production
is desferrioxamine (Gutteridge et al. 1979), which is also a powerful inhibitor of iron-dependent
lipid peroxidation (Wills 1969). Desferrioxamine, available from Ciba-Geigy as its mesylate
salt (Desferal) is widely used to prevent iron overload in thalassaemia and other conditions
requiring repeated blood transfusion. Desferal cannot be given by mouth. Doses of 50-60 mg
per kilogram of body mass (administered subcutaneously) appear safe in the treatment of iron
overload, but high doses have been associated with ocular abnormalities and patients receiving
Desferal for any purpose should be periodically checked for both ocular (Davies et al. 1983)
and auditory changes, especially in diabetics (Arden et al. 1984).

EDTA renders copper ions less reactive in OH" production (Samuni et al. 1981), but
iron-EDTA chelates still react with O; and H,O, (Butler & Halliwell 1982). Hence EDTA
has a number of potential effects in biological systems.

(i) It could minimize damage by pulling iron ions off sensitive sites and causing the OH"
formed by iron-EDTA chelates in free solution to react ‘randomly’ with less-important targets.
Such an effect may account for its ability to inhibit DNA degradation by bleomycin—iron
complexes (Gutteridge et al. 19814).

(ii) It could make damage worse by pulling iron off ‘safe sites’; i.e. the ‘random attack’
does more damage than the site-specific attack (see, for example, Wong et al. 1981). It thus
‘decompartmentalizes’ iron in a harmful way (Willson 1978).

(iii) It will, in any case, change the nature of the damage and increase its susceptibility to
inhibition by OH" ‘scavengers’ (Gutteridge 19844), because, in the presence of EDTA, the
attack will be from OH" generated close to the target ‘in free solution’ rather than from OH*
formed on the target.

EDTA is thus an interesting experimental tool, but for physiological purposes the authors
use desferrioxamine, which tightly binds iron(III) and renders it inactive as a catalyst.

HYDROXYL RADICAL FORMATION BY PHAGOCYTIC CELLS

Direct measurement of OH" radical formation iz vivo is difficult because of its high reactivity,
but recent studies in the authors’ laboratories with the use of the technique of aromatic
hydroxylation (Richmond et al. 1981 ; Grootveld & Halliwell 1985; Moorhouse et al. 1985) look
promising. Conversion of dimethylsulphoxide (DMSO) into methane has been used as an assay
method to show OH* production in whole cells (Repine ef al. 1979, 1981).

Hydroxyl radical formation by isolated phagocytic cells has been observed by using a wide
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range of techniques, including e.s.r. spin trapping (Green et al. 1979), conversion of DMSO
into methane (Repine et al. 1979), benzoate decarboxylation (Sagone et al. 1980) and
ethene formation (Weiss e al. 1977). DMSO penetrates into cells and probably measures OH*
production both extra- and intracellularly, but the other techniques are probably detecting
only external OH" generation. This external OH" generation is important in considering the
damage done by activated phagocytes to their surroundings (see Halliwell 1982a; Fox 1984)
and to themselves; an increased availability of catalytic iron complexes can decrease phagocyte
activity by damaging the phagocytes (Sweder van Asbeck et al. 19844, b). However, as far as
bacterial killing is concerned, it is the formation of OH" inside the phagocytic vacuole that
matters. Again there are two possibilities, not mutually exclusive. First, that the phagocytes
produce OH' from O3 and H,O, in the phagocytic vacuole and it attacks the bacteria from
the outside. Some evidence consistent with this is available (Johnston et al. 1975; Repine
et al. 1984). Secondly, that H,O, generated in the phagocytic vacuole penetrates into the
bacteria and produces OH" inside them. Several bacteria contain iron complexes capable of
catalysing radical reactions (Gutteridge & Wilkins 1984) and the killing of S. aureus cells by
H,O, becomes more effective if the internal iron content of the bacteria is increased (Repine
et al. 1981).

Hydroxy! radical formation inside and outside phagocytic cells: what is the physiological metal catalyst?

Although both iron and copper salts mediate radical reactions, almost all the work
concerning OH" radical formation in vivo has been done with iron salts. Discussion will therefore
be largely confined to these, although the development of an assay that measures available
copper complexes (Gutteridge 1984 d) should increase our knowledge of their importance. What
iron catalysts are available in vivo?

Simple iron chelates

The first possibility is low molecular mass iron chelates such as iron-ATP, -GTP, or —citrate.
Small ‘transit’ pools of these iron complexes are present within cells (Jacobs 1977; Halliwell
1982 6), and the killing of fibroblasts by H,O, requires intracellular metal ions, probably bound
to DNA (Mello Filho & Meneghini 1984; Floyd 1981).

Gutteridge ef al. (19814, 1982a) have developed an assay for complexes of iron capable of
accelerating radical reactions. This so-called ‘bleomycin assay’ shows that such complexes are
not present in human serum or plasma, except in some cases of iron overload secondary to
idiopathic haemochromatosis (Gutteridge ¢t al. 1985a). They are present in sweat (Gutteridge
et al. 1985b), cerebrospinal fluid (Gutteridge et al. 1982 54) and in the knee-joint synovial fluid
of many patients suffering from rheumatoid arthritis. Not all rheumatoid synovial fluids contain
bleomycin-detectable iron, but many do and the concentrations present correlate positively with
both clinical and laboratory parameters of disease activity (Rowley ¢t al. 1984). The precise
molecular form of bleomycin-detectable iron has not been established, but it is, at least partly,
ultrafilterable and may represent iron chelated to organic acids, phosphate esters or urate, or
perhaps iron weakly attached to such proteins as albumin, so that it can easily detach during
ultrafiltration (Gutteridge et al. 19855). The reasons for the presence of bleomycin-detectable
iron in synovial fluid are considered later.

Evidence for the importance iz vivo of iron-mediated radical reactions comes from studies
with desferrioxamine. Desferal blocks the haemolytic action of several radical-generating drugs
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in mice (Clark & Hunt 1983) and decreases acute lung vascular injury in animals after
complement activation due to infusion of cobra venom factor or to severe burn injury (Ward
et al. 1983; Fligiel et al. 1984). It also has a beneficial effect on the course of allergic
encephalomyelitis in rats (Bowern et al. 1984).

Ferritin

Ferritin is often regarded as a safe ‘storage form’ of iron, yet ferritin stimulates both lipid
peroxidation (Gutteridge et al. 1983) and the formation of OH’ radicals from O; and H,O,
(Bannister et al. 1984). The protein shell can be attacked by lipid peroxides, causing liberation
of the iron, which is probably why ferritin stimulates lipid peroxidation (Gutteridge 1985).
Superoxide seems to mobilize iron from ferritin, leading to subsequent OH' production
(Biémond et al. 1984). Haemosiderin also promotes hydroxyl radical formation but is less
effective than ferritin on a unit-iron basis (O’Connell & Halliwell, in preparation).

Lactoferrin and transferrin

Ambruso & Johnston (1981) reported that iron-loaded lactoferrin (two moles of Felll

per
mole of protein) is an efficient catalyst of OH" formation from Oj; and H,O,. Bannister et al.
(19824) confirmed this with the use of a different assay system, although Winterbourn (1983)
has pointed to some artefacts in the assays used and has concluded that iron-replete lactoferrin
is, if effective at all, a poor catalyst compared with simple iron chelates; a view supported by
the authors (Gutteridge et al. 198154) and by Baldwin et al. (1984). Similarly, the activity of
transferrin-bound iron in promoting OH" production has been reported as good (McCord &
Day 1978), moderate (Bannister et al. 19824), poor (Motohashi & Mori 1983) and zero
(Maguire et al. 1982; Baldwin et al. 1984).

At physiological pH, transferrin and lactoferrin seem to release iron much less readily than
does ferritin; unlike ferritin-bound iron, iron bound to the former proteins is ineffective in
stimulating lipid peroxidation (Gutteridge et al. 1981 4). One possible explanation of the above
discrepancies is that, when the fully iron-loaded proteins are studied, there is sometimes iron
bound to non-specific sites on the protein molecule that becomes detached during the assay
and is the true catalyst of OH" production. It seems difficult to imagine that iron(III) embedded
in the two specific binding sites of transferrin or lactoferrin can give rise to OH" radical that
escapes into free solution without reacting with the protein. The authors find it especially hard
to understand the claims that iron on lactoferrin (Ambruso & Johnston 1981) or transferrin
(McCord & Day 1978) equals iron-EDTA in its efficiency of forming OH" radicals.

In normal human plasma, the transferrin present is only partly loaded with iron, i.e. few

molecules have two Felll

ions bound to them. Similarly, the lactoferrin released by
phagocytic cells contains little iron and, indeed, its release has often been suggested to represent
an antibacterial mechanism by binding the iron that bacteria require. These observations would
make it even less likely that native transferrin and lactoferrin are significant catalysts of OH"
radical production in vive. Even if lactoferrin is a catalyst of OH" production by phagocytic
cells, it is not the only one, because lactoferrin-deficient phagocytes still produce OH" (Boxer
et al. 1982; Newburger & Tauber 1982).

Lactoferrin and transferrin are similar in many respects, but a major difference in their
properties is that iron is released from transferrin at pH values of 5.6 and below, whereas
lactoferrin holds on to its iron down to pH values of 2 or less (Lonnerdal et al. 1981).
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IRON AND RHEUMATOID DISEASE

Iron has long been known to play a part in the pathology of rheumatoid disease; in active
human disease there is increased deposition of iron in the synovial membranes, a drop in blood
haemoglobin and often the presence of iron complexes catalytic for radical reactions in synovial
fluid (Blake ef al. 19814, 1984; Rowley et al. 1984). The extensive deposition of ferritin iron
(Muirden 1970) within synovial membranes in the inflamed rheumatoid joint would increase
its sensitivity to radical reactions; H,O, generated by phagocytes could easily penetrate into
the synovial cells and react with iron mobilized from ferritin to form OH'" radicals. The synovial
fluid of rheumatoid knee joints also contains increased ferritin concentrations (Blake ef al. 1980)
but this ferritin contains little or no iron and appears abnormal in its properties. Idiopathic
haemochromatosis is often associated with joint inflammation (Schumacher 1982), which
resolves when the iron overload is controlled. Infusion of iron—dextran into rheumatoid patients
can aggravate the synovial inflammation (Blake ef al. 19854). The bleomycin-detectable iron
present in synovial fluid can accelerate lipid peroxidation and OH' formation in in vitro
experiments (Gutteridge et al. 19824). There is as yet no direct evidence that OH" is formed
in the inflamed rheumatoid joint, although aromatic hydroxylation as an in vivo method is being
used to study this in our laboratories. However, OH" radical formation could account for some
or all of the hyaluronic acid depolymerization (Gutteridge et al. 1979) and cartilage degradation
(Dean et al. 1985) seen in the rheumatoid joint.

Treatment with Desferal

Blake et al. (1983) observed that low doses of Desferal aggravated acute rat models of
inflammation, but larger doses were anti-inflammatory. In Glynn-Dumond synovitis in guinea
pigs, Desferal (100 mg per kilogram body mass) aggravated the acute phase of the inflammation,
but repeated administration depressed the chronic phase. A similar effect is seen in the rat
allergic air-pouch model of acute to chronic inflammation (Yoshino et al. 1984). It is not clear
why Desferal may make inflammation worse during the acute phase; by stopping OH"
production it may protect neutrophils against self-destruction (Sweder van Asbeck e al. 1984),
or perhaps some OH' production is necessary for effective regulation of inflammation, for
example, by inactivation of arachidonic acid metabolites (Henderson & Klebanoff 1983).

The suppressive action of Desferal on chronic inflammation was sufficiently encouraging for
preliminary trials with rheumatoid patients to be performed. Giordano et al. (1984) injected
1 g of Desferal intramuscularly and observed an abrupt rise in haemoglobin. No fall in the acute
phase response was observed, but the speed of the change in haemoglobin suggests that this
effect was mediated by suppressing inflammation. No ill effects were reported. Of seven
rheumatoid patients given larger doses (up to 3 g d™* for 5 days each week, for 1-3 weeks),
four developed ocular abnormalities that reversed on Desferal withdrawal. Two patients who
received prochlorperazine to combat nausea during Desferal therapy became unconscious for
48-72 h (Blake et al. 1985b), possibly because this combination of drugs mediates iron transfer
across the blood—brain barrier and achieves removal of iron essential to the functioning of the
nervous system (Gutteridge et al. 19826). It is clear that doses of Desferal suitable for treatment
of iron overload are not necessarily safe in other disease states, and the combination of Desferal
with phenothiazine drugs should be strictly avoided. Although Desferal is of potential use in
a number of human diseases (on the basis of animal experiments) caution should be employed
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in its use, and patients receiving it should be carefully checked for ocular and auditory
abnormalities.

Why is bleomycin-detectable iron present in rheumatoid fluids?

As discussed earlier, samples of knee-joint synovial fluid from rheumatoid patients often
contain bleomycin-detectable iron. Addition of excess commercial (Sigma) apotransferrin to
the assay renders the iron in synovial fluid undetectable, i.e. it is present in a form that can
bind to added transferrin under the conditions of the bleomycin assay.

Bleomycin-detectable iron does not seem to be an artefact of the collection or handling of
body fluids. It is not present in serum, handled and stored in an identical manner, except in
some cases of idiopathic haemochromatosis where the normal iron-binding capacity of
transferrin is at or close to saturation (Gutteridge et al. 19855). Inflammatory exudates taken
from the chronic allergic air-pouch model of inflammation in rats (Yoshino et al. 1984) never
show bleomycin iron. Synovial fluids taken from patients and assayed at once still often contain
bleomycin-detectable iron; in those that do not, such iron does not appear on storage at 4 °C
or on freeze-thawing.

Is bleomycin-detectable iron present because the transferrin in the fluid is fully iron loaded?
This may be so in cerebrospinal fluid (Gutteridge et al. 1982 5), but it is certainly not in synovial
fluid. Our (unpublished) data show a low percentage degree of saturation of transferrin in
rheumatoid synovial fluids, calculated by comparing the total iron content of the fluids with
the amount of immunologically determined transferrin protein. Addition of iron—-NTA chelates
to the fluids directly demonstrates this unsaturation; there is substantial iron-binding capacity.
Why then is bleomycin-detectable iron present in the synovial fluid? A possible explanation
could be that as macrophages and other phagocytes ‘slide over’ cell or cartilage surfaces, a
micro-environment sealed off from the bulk synovial fluid is created (Wright & Silverstein
1984). The pH in this micro-environment can fall to 5 or less (Etherington ¢t al. 1981). Oxygen
radicals, proteolytic enzymes, myeloperoxidase (from neutrophils) and other products are
released into this micro-environment. The low pH facilitates damage to collagen, cartilage and
cell membranes by first favouring formation of HO; from Oj, and secondly, by causing release
of iron from transferrin, assisted by the presence of ascorbic acid in synovial fluid. The released
iron is kept in the iron(II) state by HO;, O3, or ascorbate or both and thus cannot re-bind
to transferrin or bind to lactoferrin (from neutrophils). Hydroxyl radicals are formed and attack
the surface to which the phagocytes are attached (as well as the phagocytes themselves) and
also inactivate antiproteases in the micro-environment, causing further damage.

When the phagocytic cells detach or move away, the micro-environment is ‘opened’ to the
bulk synovial fluid. All that can then be seen in this fluid is a slightly lower pH than normal,
an oxidation of ascorbic acid (Blake et al. 19816), partial inactivation of ‘bulk’ antiprotease
activity (Lewis et al. 1984) and the presence of micromolar concentrations of iron available
to bleomycin. This iron will not re-bind easily to transferrin or lactoferrin because ascorbate
keeps it in the reduced state, and because transferrin does not bind iron easily from some
physiological iron complexes (Bates & Schlabach 1973).

We further suggest that one function of lactoferrin released from neutrophils, far from acting
as a catalyst of OH" formation, is to minimize damage by binding some iron, because it can
hold iron(III) at much lower pH values than can be achieved even in the postulated
micro-environment. The fact that macrophages do not synthesize lactoferrin may facilitate
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damage by iron-dependent OH' radical formation from the extracellular H,O, that they
produce.

We are grateful to the Arthritis and Rheumatism Council, Wellcome Trust, British
Technology Group, West Midlands Health Authority and Ciba-Geigy Pharmaceuticals for
research support. BH is a Lister Institute Research Fellow. BH is grateful to Professor Roger
Dean for helpful discussions.
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Dascussion

RoBERTA J. WARD (Division of Clinical Cell Biology, M.R.C., Clinical Research Centre, Harrow). What
percentage of the total synovial fluid iron is non-protein bound iron? In our studies at
Northwick Park Hospital, we have shown a significantly lower mean total iron concentration
(7.5+3 pmol 171, n = 10) in the synovial fluid of rheumatoid arthritis patients with severe
disease activity compared with rheumatoid arthritis patients with mild disease activity
(16.0+ 6 pmol 171, n = 10); P > 0.02. Therefore if the non-protein bound iron was a consistent
percentage of the total iron, Dr Halliwell’s results of a linear relation between non-protein iron
and TBA-reacting material might indicate that there should be higher concentrations of
TBA-reacting material in the synovial fluid of patients with mild disease activity. (TBA is
thiobarbituric acid.)

B. HarLiweLL. Bleomycin-detectable iron is only a small percentage of the total iron present
in synovial fluid and shows no consistent relation to the total iron present, either in synovial
fluid or in plasma from patients suffering idiopathic haemochromatosis. Our results are thus
not necessarily inconsistent with those of Dr Ward. Iron bound to lactoferrin or transferrin will
not accelerate lipid peroxidation or register in the bleomycin assay, yet will show up in ‘total
iron’ determinations.

P. M. May (Department of Applied Chemistry, UWIST, Cardiff). Dr Halliwell suggests that
chelating agents might be used to sequester iron from the low molecular mass pool in cells.
However, it is important to remember the competitive effects of other metal ions in the
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biological medium. For example, has he actually observed the reactions of EDTA that he
discusses? I would expect them to be entirely inhibited by the binding of endogenous Cal!
or Mg! to the chelating agent.

B. HAaLLiweLL. Because EDTA promotes iron-dependent formation of hydroxyl radicals we do
not recommend it for use in vivo. Desferrioxamine has a binding constant for Fe!'l several
orders of magnitudes greater than that for any other metal ion.

EDTA administered to animals in other experiments is often given as its calcium chelate.

H. Sies (Institut fiir Physiologische Chemie I, Universitit Diisseldorf, F.R.G.). I might comment on
some clinical observations in West Germany. Superoxide dismutase has been introduced as a
drug in 1982 under the name of Peroxinorm, largely in the field of orthopedic surgery. As far
as I know, about 600000 patients have been treated for disorders such as gonarthritis,
coxarthritis and other inflammations, and the results have been positive.

B. HAaLLiweLL. These observations are encouraging in showing the role of oxygen radicals in
inflammation in vivo, but are the beneficial effects of SOD any better than those of steroids,
non-steroidal anti-inflammatory drug therapy or other drugs? It must not be assumed that
the ability of SOD to scavenge Oj necessarily accounts for its anti-inflammatory effect
(Baret et al. 1984).
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